468 research outputs found

    Optimal control of predictive mean-field equations and applications to finance

    Get PDF
    We study a coupled system of controlled stochastic differential equations (SDEs) driven by a Brownian motion and a compensated Poisson random measure, consisting of a forward SDE in the unknown process X(t)X(t) and a \emph{predictive mean-field} backward SDE (BSDE) in the unknowns Y(t),Z(t),K(t,)Y(t), Z(t), K(t,\cdot). The driver of the BSDE at time tt may depend not just upon the unknown processes Y(t),Z(t),K(t,)Y(t), Z(t), K(t,\cdot), but also on the predicted future value Y(t+δ)Y(t+\delta), defined by the conditional expectation A(t):=E[Y(t+δ)Ft]A(t):= E[Y(t+\delta) | \mathcal{F}_t]. \\ We give a sufficient and a necessary maximum principle for the optimal control of such systems, and then we apply these results to the following two problems:\\ (i) Optimal portfolio in a financial market with an \emph{insider influenced asset price process.} \\ (ii) Optimal consumption rate from a cash flow modeled as a geometric It\^ o-L\' evy SDE, with respect to \emph{predictive recursive utility}

    A maximum principle for infinite horizon delay equations

    Get PDF
    We prove a maximum principle of optimal control of stochastic delay equations on infinite horizon. We establish first and second sufficient stochastic maximum principles as well as necessary conditions for that problem. We illustrate our results by an application to the optimal consumption rate from an economic quantity

    Normal Heat Conduction in a Chain with Weak Interparticle Anharmonic Potential

    Full text link
    We analytically study heat conduction in a chain with interparticle interaction V(x)=lambda[1-cos(x)] and harmonic on-site potential. We start with each site of the system connected to a Langevin heat bath, and investigate the case of small coupling for the interior sites in order to understand the behavior of the system with thermal reservoirs at the boundaries only. We study, in a perturbative analysis, the heat current in the steady state of the one-dimensional system with weak interparticle potential. We obtain an expression for the thermal conductivity, compare the low and high temperature regimes, and show that, as we turn off the couplings with the interior heat baths, there is a "phase transition:'' the Fourier's law holds only at high temperatures

    Non-equilibrium Statistical Mechanics of Anharmonic Crystals with Self-consistent Stochastic Reservoirs

    Full text link
    We consider a d-dimensional crystal with an arbitrary harmonic interaction and an anharmonic on-site potential, with stochastic Langevin heat bath at each site. We develop an integral formalism for the correlation functions that is suitable for the study of their relaxation (time decay) as well as their behavior in space. Furthermore, in a perturbative analysis, for the one-dimensional system with weak coupling between the sites and small quartic anharmonicity, we investigate the steady state and show that the Fourier's law holds. We also obtain an expression for the thermal conductivity (for arbitrary next-neighbor interactions) and give the temperature profile in the steady state

    Precautionary Measures for Credit Risk Management in Jump Models

    Full text link
    Sustaining efficiency and stability by properly controlling the equity to asset ratio is one of the most important and difficult challenges in bank management. Due to unexpected and abrupt decline of asset values, a bank must closely monitor its net worth as well as market conditions, and one of its important concerns is when to raise more capital so as not to violate capital adequacy requirements. In this paper, we model the tradeoff between avoiding costs of delay and premature capital raising, and solve the corresponding optimal stopping problem. In order to model defaults in a bank's loan/credit business portfolios, we represent its net worth by Levy processes, and solve explicitly for the double exponential jump diffusion process and for a general spectrally negative Levy process.Comment: 31 pages, 4 figure

    Modeling temporal fluctuations in avalanching systems

    Get PDF
    We demonstrate how to model the toppling activity in avalanching systems by stochastic differential equations (SDEs). The theory is developed as a generalization of the classical mean field approach to sandpile dynamics by formulating it as a generalization of Itoh's SDE. This equation contains a fractional Gaussian noise term representing the branching of an avalanche into small active clusters, and a drift term reflecting the tendency for small avalanches to grow and large avalanches to be constricted by the finite system size. If one defines avalanching to take place when the toppling activity exceeds a certain threshold the stochastic model allows us to compute the avalanche exponents in the continum limit as functions of the Hurst exponent of the noise. The results are found to agree well with numerical simulations in the Bak-Tang-Wiesenfeld and Zhang sandpile models. The stochastic model also provides a method for computing the probability density functions of the fluctuations in the toppling activity itself. We show that the sandpiles do not belong to the class of phenomena giving rise to universal non-Gaussian probability density functions for the global activity. Moreover, we demonstrate essential differences between the fluctuations of total kinetic energy in a two-dimensional turbulence simulation and the toppling activity in sandpiles.Comment: 14 pages, 11 figure

    Deterministic Dicke state preparation with continuous measurement and control

    Get PDF
    We characterize the long-time projective behavior of the stochastic master equation describing a continuous, collective spin measurement of an atomic ensemble both analytically and numerically. By adding state based feedback, we show that it is possible to prepare highly entangled Dicke states deterministically.Comment: Additional information is available at http://minty.caltech.edu/Ensemble

    Gaussian approximation and single-spin measurement in OSCAR MRFM with spin noise

    Full text link
    A promising technique for measuring single electron spins is magnetic resonance force microscopy (MRFM), in which a microcantilever with a permanent magnetic tip is resonantly driven by a single oscillating spin. If the quality factor of the cantilever is high enough, this signal will be amplified over time to the point that it can be detected by optical or other techniques. An important requirement, however, is that this measurement process occur on a time scale short compared to any noise which disturbs the orientation of the measured spin. We describe a model of spin noise for the MRFM system, and show how this noise is transformed to become time-dependent in going to the usual rotating frame. We simplify the description of the cantilever-spin system by approximating the cantilever wavefunction as a Gaussian wavepacket, and show that the resulting approximation closely matches the full quantum behavior. We then examine the problem of detecting the signal for a cantilever with thermal noise and spin with spin noise, deriving a condition for this to be a useful measurement.Comment: 12 pages, 8 figures in EPS format, RevTeX 4.

    Pulsating Front Speed-up and Quenching of Reaction by Fast Advection

    Full text link
    We consider reaction-diffusion equations with combustion-type non-linearities in two dimensions and study speed-up of their pulsating fronts by general periodic incompressible flows with a cellular structure. We show that the occurence of front speed-up in the sense limAc(A)=\lim_{A\to\infty} c_*(A)=\infty, with AA the amplitude of the flow and c(A)c_*(A) the (minimal) front speed, only depends on the geometry of the flow and not on the reaction function. In particular, front speed-up happens for KPP reactions if and only if it does for ignition reactions. We also show that the flows which achieve this speed-up are precisely those which, when scaled properly, are able to quench any ignition reaction.Comment: 16p

    Continuous quantum feedback of coherent oscillations in a solid-state qubit

    Full text link
    We have analyzed theoretically the operation of the Bayesian quantum feedback of a solid-state qubit, designed to maintain perfect coherent oscillations in the qubit for arbitrarily long time. In particular, we have studied the feedback efficiency in presence of dephasing environment and detector nonideality. Also, we have analyzed the effect of qubit parameter deviations and studied the quantum feedback control of an energy-asymmetric qubit.Comment: 11 page
    corecore